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Abstract

The purpose of this article is to give some asymptotic formulae of polyorthogonal polynomials
with respect to some classical measures. The formulae are analogous to the Mehler—Heine formulae
for Jacobi and Laguerre polynomials.
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1. Introduction

The denominators of the Padé approximants of the Stieltjes transform of a positive mea-
surep coincide with the orthogonal polynomials associated witsimilarly, the Stieltjes
transforms of several positive measuygs i, ..., 4; can be approximated by rational
functions which are called the simultaneous Padé approximants. The denominators of these
approximants have some orthogonality properties. They are called polyorthogonal polyno-
mials (of type 1l) or multiple orthogonal polynomials (see [2,6] or [11]).

In this article, we shall consider the polyorthogonal polynomials of type Il which are
called Jacobi-Jacobi (J-J) and Jacobi—Laguerre (J-L) type. The J-J type polynomials are
considered by Kalyagin [5] and the J-L type polynomials are considered by Sorokin [7].
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The definition of them (we give in 83) are similar to the Jacobi and Laguerre polynomials.
Thus they are expected to have similar properties as those of the Jacobi and Laguerre
polynomials. Especially, we are interested in asymptotic properties when the degrees of
these polynomials go to infinity. The main purpose of the present paper is to give new
asymptotic formulae, which are analogous to the Mehler—Heine-type asymptotic formulae
of Jacobi and Laguerre polynomials. Other various properties of these polynomials are well
studied in Sections 3.5 and 3.6 of [10].

Several strong results have been obtained dealing with Mehler—Heine-type formulae of
orthogonal polynomials in recent years [1,9]. But the known Mehler—Heine-type formulae
of polyorthogonal polynomials are only a few [3].

To prove the Mehler—Heine-type formulae for Jacobi and Laguerre polynomials usually
the explicit representations of these polynomials are used (see [8, §8.1]). Our polynomials
also have similar explicit representations, but they are so complicated that it is difficult
to apply the same method as Jacobi and Laguerre polynomials to our case. Therefore, we
shall give new certain different representations using the Jacobi and Laguerre polynomials.
Then we shall prove the desired asymptotic formulae from the representations by using the
Mehler—Heine-type formulae for the Jacobi and Laguerre polynomials.

2. Preliminary

In this section we fix the notations and terminology we use throughout this paper.

The Borelg-algebra on the real line is the smallestlgebra containing all compact
subsets oR. We say that @-additive set function defined on the Botehlgebra is dinite
positive Borel measurié it takes finite nonnegative values. A poihte R is called gpoint
of increaseof the measure: if u(A — ¢, 1+ ¢) > 0 for everye > 0. The set of points of
increase oft is called the spectrum @f Thesupportof i is the smallest interval containing
the spectrum of..

We use the following notation:

f(n)=0(gm) asn— oo 1)
to state thatf (n)/g(n) is bounded ag — oo.
3. Certain Angelesco systems (s¢6])

Let us consider the following Stieltjes integrals:

(dl
(m@=/“‘?,1g<L @)
A,' Z—6
SetA; C R andy; is afinite positive Borel measure with suppdytfor eachi. For a vector-
indexn = (n1,n2,...,n)) € Zﬁr, there exists a polynomiad = p,, with degp <|n| such
that

/A CpOw@E) =0, 0<v<n — 1 3)

ll
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for 1<i <!. Because of this orthogonality, we call, an nth polyorthogonal (precisely,
[-orthogonal) polynomial (of type II).

An indexn is said to be normal if degn = |n| for any nth Padé pair. And if alh are
normal,w = (w1, wa, ..., w;) is called a complete system.

We present an example of a complete system, which is called an Angelesco system.
Suppose that the spectrum of eaghis infinite and {A;} are pairwise disjoint. Then for
any indexn, thenth I-orthogonal polynomiap hasn; simple zeros insidd; for 1<i <.
Consequentlys is complete.

Especially, let us consider the following two Angelesco systems:

Q) 1=2,Ar=[-1,+1],A2 = [+1,4], (a > 1) and
dug = |h(x)|dx onA; and du, = |h(x)|dx onAp, 4)

whereh(x) = (1 — x)*(1+x)Pa — x)" foro, f, 9 > —1.
(2) I =2,A1 = [0, 00), A2 = [b, 0], (b < 0) and

duy = h(x)ldx onA; and du, = |h(x)|dx onAy, (5)
whereh(x) = e *x*(x — b)P for o, p > —1.

These systems define the 2-orthogonal polynonp%,ég ) andl(jl /fl), respectively. These
polynomials are sometimes called J-J and J-L polynom|als We note J-L polynomials can
be constructed as a limit case of J-J polynomials {$6e Section 3.5]). Furthermore,

we set

@y @p
p if n =2k, [ if n =2k,
wpy ) &P jap _ ) R
pn - ) n — .
p&ENitn =2k 41, @B it =2k+ 1.

In this article we are interested in asymptotic properties of these polynomials.

4. The Mehler—Heine formulae

We recall some well-known and important properties of the Jacobi and Laguerre poly-
nomials in this section (s€8]).

Fora, f > —1, the Jacobi ponnomiaIB,f“’ﬁ) (x) are defined by
(1—0)*(A+ x)ﬁP(“’/” (x)

n 2"n!

Using Leibniz’ formula, we can show,f“’ﬁ) (x) are polynomials of degree And they have
the orthogonality conditions

+1
/ PP @ 0*Q+x)fdr =0, 0<v<n — 1. @)
-1
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Conversely, (7) and’,f“’ﬂ)(l) = 1 imply (6). The Jacobi polynomials have the explicit
representation:

PP (x) v To4oa+B+v+1) 1 <x—1>V -
'+ 1) = n—v)! Th+oa+p+1) Ta+v+1) 2
Similarly, for« > —1 the Laguerre ponnomiaIs,(,“) (x) are defined by
14y
e LD (x) = <” 1‘ 0‘) = <E) (e X", ©)
LE,“) (x) are polynomials of degreeand have the orthogonality conditions
/Ooox"Lff‘)(x)exx“ dx =0, 0<v<n—1. (10)

Eq. (10) ande,“) (0) = 1 imply (9). And the explicit representation of the Laguerre poly-
nomials is

n

Ly (x) _y n! 1 (—x)
T+l “Z@-nTe+v+1) v

11)

The Jacobi and Laguerre polynomials have the following asymptotic properties:

Theorem 4.1(The Mehler—Heine formulae)\e have

2
lim PP (1 — Z—2> =T(a+ D) (z/2 " Ju(2), (12)
n—oo 2n
1
lim L® (E) =T+ 1)z 2,222, (13)
n—00 n

whereJ,(z) is the Bessel function of the first kirehd the convergence is both uniform in
every bounded region of the complex z-plane.

5. Some properties ofp*F? (x)

We haves, f,7 > —1 anda > 1. The polynomialsy{™? (x) of degreen have the

following orthogonality condition:

+1
/ 2 ps PP @)L - 2P A+ 0@ —x) dx =0, 0<v<k — 1, (14)
-1
o
/ 2 PP - 2@+ 0@ — 1) dx =0, 0<v<k -1, (15)
+1

+1
/ 2P - 2@+ 0@ - x)dx =0, 0<v<k, (16)
-1
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RN CY
/ Myt (@11 = x*A+ 1)@ —x)7dx =0, 0<v<k - 1. (17)
+1

Furthermore, we set

p,(;x’ﬁ'v)(l) —1. (18)

The polynomialsp™#? (x) are uniquely determined by (14)=(18). We will give some

important properties of these polynomials.

Lemma 5.1. Suppose thatl — x| < |a — 1|, then we have

(a—x)"pSP? (x)
-1 00 . i
k + 9 k41 k+a+ 1-—x o+,
=("07) e () () (Gm) me -

Proof. Using (14)—(15) we can prove the existencep$uch that
(1= 2" A+ 0P @ — 07 pg " (x)
k
= (%) (@=L 4 0@ — 0k, (20)

If |1—x| < ]a— 1|, we have

k
(%) [(1 — )+ x)k+ﬁ{(a -1+ @1- x)}k+~,]

d k o . as k—}-y 1—x i
- (i) [“‘”H aro e (417 (55)

i=0

00 k
— (Cl _ 1)k+‘,’ Z <k _:_ V) (Ll _ 1)—i (i) [(l _ x)k+9(+i (1 + x)k-‘rﬁ]

= dx
= 1-0*A+x)@— 1t
o~ (k+9)\ (k+o+i 1—x\'
XZ( l. />( Z ’)(—1)"2’%! <a_—1) PR (), (21)

i=0
Thus we have

(a —x)" pSP? (x) = ey (a — D (—1)F 2!
N (k+7\ (k+a+i)(1=x\ eip
- o+,
() ) e e

Here by settingc = 1, we obtain

-1 _ &
o = <k+°‘> (@ -1t 23)

k 26k!
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Therefore, we have
(a =) PP )
_(k+a «,OO k+7y\ (k+oa+i) (1-x\ _o+ip
_< L ) (a—l)§< l, )( L )<—a_1> PP (x). (24)
We have thus proved the lemmal]

Lemma 5.2. We have
PB ) = s ey B0 aping o)
2k+1 2—(a—1)d 2k 2—(a—1)dy 2k ’

where

., _—iil(l - x)kJroc(l + x)k+[f+1(a _ x)k+"/ dx (26)
k = .
"il(l — )kl 4 kB (g — x)kHr+L gy

Proof. There exist; andc; such that

L - 0*A+ 0P @ -7 ps )

k
— C]/( (i) {(1 _ x)k+ot(1+x)k+ﬁ+l(a o x)k‘l*"/}

+cf (; ) (L= 0" 1A 4 ) FF (@ — x)f 1+ (27)
and

+1
o / (1 — ) QA + ) PG — )M dx
-1

+1
+f / L= 0@+ 0 @ — )} dx = 0. (28)
-1

From (27) and (19), we get

Pl = 2 (1+ 5P @)+ E @ - 0P ). (29)

Sincepgf'l”(l) =1, we have

2 / //
S 1)_ = (30)
Ck

Therefore, if we set

—Zl(l — x)kte@ 4 )kl (g — )k gx

"il(l — k(L 4 x)kHB(q — x )kt dx

(1)
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we obtain
cp/ck =1/{2—(a — Ddi},
(32)
cp/ek = —di/ {2 — (a — Dydy} .
By (29) we obtain the desired result]
Lemma 5.3. Letd, be defined as in Lemnta2. Putxg = &4 V?,“ZJ“Q’ Then
1
im d = =0 (33)
k—00 a — xo

This lemma is easily shown by the method of steepest descer{8(&&71]).

6. A Mehler—Heine-type formula for p,(,“’ﬁ’”

We define certain Jacobi-like 2-orthogonal polynomials in the previous section. In this
section we will prove an asymptotic formula for them:

Theorem 6.1(A Mehler—Heine formula fop**"). Let p*#? be the same as in

Section3.

. ) 1—a?272 -
lim p*F? (1— it ):F(a—i—l)(%) * 1. (34)

n—00 3—a 7
where the convergence is uniform in every bounded region of complex z-plane.

Proof. Firstlet us considepéi’ﬁ'”. From (19) for sufficiently largé

2 Y
14+ ? @B (1 _ 22 [kt e k+y\[(k+oa+i
a—1]) P& 22 )T\« Z,O i k
=
22 i 2
%2 @+ B z
P 1- ). 35
X(a—l) k < 2k2> (35)

For the (i+ 1)st term of the right-hand sidezfandi are fixed anck — oo, then we have
I'(k+DI'(e+1) I'tk+7y+1) I'k+o+i+1)
I'k+o+1) TE+DDI'k+y—i+DI'Gk+DI(a+i+1)

P , 22
« | 22 Pk(“ﬂﬁ) 1- 2
a—1 2k?

_u (_1)i 2 z 14
I <1Ta§) Joti (2). (36)

—>F(oc+1)<%)
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Here we used Theorethl. Moreover, by the multiplication theorem for Bessel functions
we obtain

o0 o (— i 2 i
g I'ae+1) (%) (l# (m%) Ju+i (2)

ZF(“l)(‘/i:Z%) Ja( i:;&) (37)

Thus we need to show that we can interchange the limit and the summatidh)inie
have the inequality

-1 . il ! 2
k+o k+7y\[(k+o+i 2k2 potih (4 _ 2
k i k a—1] "k 2k2

i

2
2k2

a—1

e+ 1) IF'k+y+1) Tk+oa+i+1)
Frk+oa+DHT(k+y—i+1) T+i+ 1!

D ‘

2 v
xXk: kI Tk+atit+pf+v+1) (—ﬁ) 8
| k=Wt I'k+o+i+p+1) T@+i+v+1)]|
We denote the right-hand side By, . If i <k + [y], we have
IF'k+o+i+1) Tk+y+1)
I'k+oa+1) Tk+y—i+1)k%
e +a+ DIk +y—i+))
- ki ' ki
a+i\ 7\
< i
\(1+ p )(1+k)
i\ k71 S\ K1
" 1+1+O€+l 1+1+/
k k
= O(¢') ask — oo, (39)

uniformly ini, 0<i <k + [y]. And we have

k 72 v
3 k' Tk+oa+i+pf+v+1) (_m)
k= Tk+ot+i+f+1 Ta+i+v+l)

k .
y@Ck+i+o+p)Y 2|2 B
) ; ¢ kY (4k)” Cla4+v+1) oW, (40)
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ask — oo. Therefore, there exist constamism’ such that

k471 k+[7] i

m
12(; szgm Z m =0O(l) ask — oc. (41)

Thus we obtain

1k . 2 \!
i (k+o 125 k+9\ (k+oa+i) [ 32 PO 2
i <k+o<) <k+y>(k+oc+i)
i k
=0
Z_Z (OH—lﬁ) 1_Z_2
2%2

=r(a+1)<,/i:;’%) Ja( i:;%) (42)

On the other hand we have

Q

2\V
K Th+o+it+l+p+v+1) (—ﬁ)
k- Thk+a+i+1+p+1) Te+i+1+v+1)

IF'2k+a+i+p+1)
STk+o+i+B+D0(e+i+1)

ZZ v
k' Tk+a+i+pf+v+1) (—m)

. 43
k=W Thtotitfrl) T@titvtl (43)
Thus fori >k + [y] and a sufficiently larg&, we obtain
2
friva _i—k—pktoti+l 2k +o+i+p+1 52
fri  i4+1  a+i+l (k+oa+i+p+D@+i+1)|a—-1
2
6 .
< —— 22 | o<1 (44)
a+i+1l|la—1
Therefore, we obtain an inequality
> 1
Jri < fik+m . (45)
1-c¢

i=k+17]
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By (41), we know lim . fi x4+ = 0. Hence we obtain
o
> fui=0. (46)
i=k+[7]

Thus from (42) and (46) we conclude

2 —o
(@.p.7) 4 3—az 3—a
m =T N = :
o, P2 (1 2k2> (“J“l)( l—a2> J“( 1—az> &0

Next let us considepgif’l’). Lemmas5.2 and 5.3 lead us to the following asymptotic
behavior:

2
(o.8.7) 2
p2k+1 <1 2k2>

2

2_ 2
_ 2k2 p(a,ﬁ+1,v) 1- 2
—(a—1yd % 2k2

2
_ 4
L (a 1+ W) (o, B,7+1) <
——p 1—
2—(a—Ld "%

. 2 Tt 1) z xJ 3—a

2-(a 1)1+"° 2) \Vi=d®
z - 3—a
z) A=

1+x0 (
) .0 (48)

w
a
L>~:,|m

'_\
Q

00
Q

|_\
Q

4 (+D<
a . A 14x
—<—Df£

(T8 a((E

7. Some properties of *P (x)

00

|_\

We havez, f > —1andb < 0. The polynom|al$,1°‘ P (x) of degreen have the following
orthogonality condition:

o
/ 1P (e x*(x = )P dx =0, 0<v<k — 1, (49)
0

0
/ x"léz‘ﬁ)(x)efxle(x —blax =0 o0<v<k -1, (50)
b
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o
/ XI5D e a1 (r — by dx =0, 0<v<k,
0

0
/ P (e v — )P dx =0, 0<v<k -1
b

If we set
o =1,

the ponnomials,(l“’ﬁ) are uniquely determined.

Lemma 7.1. Suppose thdtc| < |b|, then we have
(x — bYPIEP (x)

-1 [ee} .
_(k+o k+p\[(k+o+i XN (i)
() e () () ) e

Proof. There exists a consta@“) such that
k
e x(x — BYPISP (x) = ¢ <%) {e_xxk+°‘(x - b)"+/3} .
Since|x| < |b|, we have
e x%(x — b)ﬁlg’ﬁ) (x)

o d ¢ —x o — k+p x\i
:C£)<E) ie xkt (—b)"ﬂf;( i >(_Z)}

—c® bk+ﬁoo k+B\ (k+o+i 1ik, —x ot g (aH)
=C,”(=b) Z ; X % le™*x e ().

i=0

As léz‘ﬁ)(O) =1, we get

c® _ k+o\ T (=b)*
A G k'

We have thus proved the lemmal]

Lemma 7.2. We have

k4+oa+1

(o)
/ =
(x) o

1, X—=Db (up+1
5l Dl + =R W,

where
fgo e—xxk+o<+1(x _ b)k+ﬂ dx

fgo e~ Xxk+o(x — pYyk+P+1lgx’

D, =

(51)

(52)

(53)

(54)

(55)

(56)

(67)
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Proof. There exist constants; andC; such that

k
e_xxlx(x _ b)ﬁlgfi(x) — C]/( (%) {e—xxk+o<+l(x _ b)k+ﬁ}

k
+C;/(/ (i) {e—xxk+o<(x _ b)k+[f+1}

dx
G (@+1.6)
— C(u—ﬂ‘rl)e_xx“+l(x — )PP (x)
kc// ﬁ 1
+C(§ ce Tt (x - by (), (58)

k
and

o0 o
C,’{/ e xk (e — pyRHBL gy 4 C,’c’/ e xktetle — kB gy = 0. (59)
0 0

As léi’ﬂ(O) =1, we have

S T W ) e

c;(’zL:< X ) —a (60)
Put

B b e ket — bYkP dx

Dy = JBOO e—Xxk+a(x — p)k+h+1 dx’

(61)

then we have

B k+oa+1 2418 X —b @p+1
zgjﬁ(x)z—ﬁnkng* P+ =g Pw. o (62)

Lemma 7.3.

lim Dy =1. (63)
k— o0

We can easily show this lemma by the method of steepest descef (§8¢72]).

8. A Mehler—Heine-type formula for l,(,“’ﬁ)

We also give a Mehler—Heine formula fl;ﬁi"ﬁ).

Theorem 8.1. We have

4bz?
lim ly(,a'ﬁ) (n_é) =I'(a+ 1)Z_aJo<(Z) (64)

n—o0

and this convergence is uniform in every bounded region of complex z-plane.
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Proof. From Lemmar/.1 we have for sufficiently large

B
bz @p [ bz
<k2 _b) £ (kz)
IF'k+o+i+1) I'k+p+1)
B
=T@+ D=5 Z Th+atl) T*h+p—i+tD
22/KD)" i) (b_Zz >
iNTa+i+1) K k2 )

We have

TF'k+oa+1) Th+p—i+D)ilT(a+i+1) k2

X Tk+oa+i+1) Th+p+1)  (—z2/k?) L(a+,-)<b_z2>'

i=0

93
i=0
k i (bZZ)v
Xg T +i+1) k2
> | %+ j B—i+j\ (2%
ZZH( >Hl<1+ 5
P
k

5 Z 1 (bz%)"
—|T+i+1) k!

I'k+a+i+1) T'Gk+p+1)
kT +a+1) KkTk+p—i+1) i

Put
i N S
_ o+ B—i+j\ (=22
Fk,i—l_[<1+ ; )H(l—i— p ) -
Jj=1 Jj=1
k 2\v
1 (bz9)

<3 (65)

5 I'a+i+1) k'v!

ati\ B\ (=23 ‘
(15) (48) S 12

v=0

14 i\ KB INKHBT (2
(l+a+k+z> <1+ﬁ: ) ( ;’) .
!

If i <k + [f1, we have

(bz%)"
vl

Fkl B

I'e+1)
1
g—

I'a+1)

Mi
—, (66)

|bz2|
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whereM and M’ are independent afandk. If i >k + [f] andk is sufficiently large, we
have

Fy.i 1 i+ 1 —i\ —z°
k,lJrl< : 1+o¢+1+ 1+/3 i . Z
Fr.i a+i+1 k k i+1

< k—2|z|2 <C <1
Therefore, we obtain
Z Fii < Fogy = <M’ M1 —> 0 ask — oo.
et 1= c>" Gk+pN1-C
Ask — oo,
(bz2 —b)ﬁl(x B (bz )
k? k?
k+T81

IF'k+o+i+1) I'k+p+1)
IF'k+a+1) Th+p—-i+1)
. (—Zz/lfz)i L]((oc+i) bz?
N+ i+1) k2

=T+ 10 Y
i=0

) +o(1)

IF'k+o+i+1) I'k+p+1)
IF'k+a+1) Tk+p—-i+1)

(—z2/k?)i L(a_H) (bz )

— T(a+ 1)(=b)f Z klim
i=0 %™

m K2

2i

)
=T(0+1)(— b)ﬁz m

=T+ 1)(—b)ﬁz_“Ja(z)-
From Lemmag.2 and 7.3 we have

J@B) ba®\ _ _k+°<+1Dk bz? oL bz?
AL\ g2 a+1 ra 3

(%)

—b 1 i) (b2
—b k2

— lim l(“ A0 <[Z ) I+ 1)z *Jy(z) ask — oco.  (67)

k—00

+

Therefore we have proved the theoreni

9. A note on Theorems 6.1 and 8.1

From Theorems 6.1 and 8.1 we can obtain an interesting theorem immediately.
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Theorem 9.1. We set the positive zeros.bfbe j1 < j» < - - - and the zeros 0P (2),

1P (2) be as follows:
s e es 1™ << <
If n = 2/(,
pr(z“ﬁ/)
<o <1l <o < <
if n=2k+1, (68)
b<ul((")<...<ug-n)<0<v§-n)<.“<vlin) if n = 2k
l(%ﬁ)

b<u](('21<---<u§”)<0<v§n)<~-~<v,({n) if n=2k+1. (69)

Then for any i

3 s.(")—l 3 (M1 .
nﬁ’z — 00, na—jlz — ji fl<a<3,
) )
—aS; 1 gt -1 .
n gT‘l’S’Z — Ji, n 2’7‘1"2 — o if 3<a,
(70)
n ul(»") CIn vi(")
2V 7 — Ji» N —> 00 (71)
asn — oo.

This theorem can be interpreted as the phenomena of charge repelling in the following
electrostatics model. Fix three point charges with magnitdgés St and 52 on the line
at positionst = +1, x = —1 andx = a > 1, respectively. Suppose= 2k movable unit

charges are located at distinct pointé < x,E”) <. < xi”) < +1and+1 < y(”>

- < y,ﬁ”) < a onthe line, and that all + 3 charges repel with an interaction force derived

from a logarithmic potential. Then the equilibrium position of the movable unit charges is
attained at the zeroqg(‘:’ﬁ’y) (x))=0,i=1,...,2n. For more information sef].
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